An Efficient Quantum Algorithm for the Hidden Subgroup Problem in Nil-2 Groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Quantum Algorithm for the Hidden Subgroup Problem in Extraspecial Groups

Extraspecial groups form a remarkable subclass of p-groups. They are also present in quantum information theory, in particular in quantum error correction. We give here a polynomial time quantum algorithm for finding hidden subgroups in extraspecial groups. Our approach is quite different from the recent algorithms presented in [17] and [2] for the Heisenberg group, the extraspecial p-group of ...

متن کامل

An Efficient Quantum Algorithm for the Hidden Subgroup Problem over Weyl-Heisenberg Groups

Many exponential speedups that have been achieved in quantum computing are obtained via hidden subgroup problems (HSPs). We show that the HSP over Weyl-Heisenberg groups can be solved efficiently on a quantum computer. These groups are well-known in physics and play an important role in the theory of quantum error-correcting codes. Our algorithm is based on noncommutative Fourier analysis of co...

متن کامل

An Efficient Algorithm for the Hidden Subgroup Problem over a Class of Semi-direct Product Groups

In this paper, we consider the hidden subgroup problem (HSP) over the class of semi-direct product groups Zn⋊Zq. The definition of the semi-direct product depending on the choice of an homomorphism, we first analyze the different possibilities for this homomorphism in function of n and q. Then, we present a polynomial-time quantum algorithm for the case Zpr ⋊ Zp when p is an odd prime.

متن کامل

An Efficient Quantum Algorithm for the Hidden Subgroup Problem over a Class of Semi-direct Product Groups

In this paper, we consider the hidden subgroup problem (HSP) over the class of semi-direct product groups Zn ⋊ Zq. The definition of the semi-direct product depending on the choice of an homomorphism, we first analyze the different possibilities for this homomorphism in function of n and q. Then, we present a polynomial-time quantum algorithm solving the HSP over the groups of the form Zpr ⋊ Zp...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algorithmica

سال: 2010

ISSN: 0178-4617,1432-0541

DOI: 10.1007/s00453-010-9467-0